Vehicle costs
In this example, we learn about the vehicle cost attributes. NextBillion.ai’s Route Optimization Flexible API currently provides two types of vehicle costs - fixed
and per_hour
costs.
Fixed costs are the cost of using the vehicle irrespective of how long the vehicle remains in use. Driver fee, license fee, taxes etc can be thought of as fixed costs. If only the fixed cost of the vehicle is provided then it will be added to the travel_cost
of the route.
per_hour
on the other hand, is a way to factor the hourly cost of operating a vehicle in the optimization calculations. If the vehicle per_hour
cost is provided, the optimizer will only consider the vehicle cost (either only per_hour
or a sum of fixed
& per_hour
if fixed
cost is also provided) as the total cost of the route. The route with lower costs is preferred over other routes, in general, given other constraints like - time_windows, skills, location of the tasks, vehicles etc.
Get Started
Readers would need a valid NextBillion API key to try this example out. If you don’t have one, please contact us to get your API key now!
Setup
Once you have a valid API Key, you can start setting up the components to be used in this example. Let’s take a look at them below.
Jobs & Shipments
We start by defining 3 jobs and 2 shipments. For these tasks we add:
-
A unique identifier for each task
-
Location indexes for each task
-
Specify the schedule of tasks. This is done by adding time windows within which a task must be completed. We have added a 15 min time window for all tasks for the sake of simplicity, but Route Optimization Flexible API is absolutely capable of handling tight task schedules equally well.
-
Skills needed to perform each task
The actual time taken to complete the tasks once the driver/vehicle is at the task’s location i.e. the service time for each task.
Let’s take a look at the jobs
JSON after the above properties are configured:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121
{ "jobs": [ { "id": 1, "location_index": 0, "service": 300, "skills": [ 1 ], "pickup": [ 0 ], "time_windows": [ [ 1693398600, 1693399500 ] ] }, { "id": 2, "location_index": 1, "service": 180, "skills": [ 1 ], "pickup": [ 0 ], "time_windows": [ [ 1693401300, 1693402200 ] ] }, { "id": 3, "location_index": 2, "service": 300, "pickup": [ 0 ], "skills": [ 2 ], "time_windows": [ [ 1693408500, 1693409400 ] ] } ], "shipments": [ { "pickup": { "description": "Shipment Pickup 1", "id": 1, "location_index": 3, "service": 120, "time_windows": [ [ 1693404000, 1693404900 ] ] }, "delivery": { "description": "Shipment Delivery 1", "id": 1, "location_index": 4, "service": 120, "time_windows": [ [ 1693405800, 1693406700 ] ] }, "skills": [ 2 ], "amount": [ 2 ] }, { "pickup": { "description": "Shipment Pickup 2", "id": 2, "location_index": 5, "service": 120, "time_windows": [ [ 1693407600, 1693408500 ] ] }, "delivery": { "description": "Shipment Delivery 2", "id": 2, "location_index": 6, "service": 120, "time_windows": [ [ 1693409400, 1693410300 ] ] }, "skills": [ 3 ], "amount": [ 2 ] } ] }
Vehicles
Next, we add 4 vehicles that are going to fulfill the tasks within the defined constraints. To describe the vehicles and their properties we add:
-
A unique ID for each vehicle
-
Vehicle shift time or the time window
-
Capacity to denote the amount of load that the vehicle can take
-
Start_index to denote the point from where the vehicle would start.
-
Skills of the driver or the vehicle
-
In order to demonstrate all combinations of vehicle costs, let’s add only
fixed
cost for vehicle 2, onlyper_hour
cost for vehicle 3, both types of costs for vehicle 1, and a high fixed cost for vehicle 4.
Once the vehicle and their properties are defined, the resulting vehicles
JSON is:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73
{ "vehicles": [ { "id": 1, "start_index": 7, "skills": [ 1 ], "capacity": [ 10 ], "costs": { "fixed": 1000, "per_hour": 1000 }, "time_window": [ 1693396800, 1693404000 ] }, { "id": 2, "start_index": 8, "skills": [ 2 ], "capacity": [ 10 ], "costs": { "fixed": 1000 }, "time_window": [ 1693402200, 1693411200 ] }, { "id": 3, "start_index": 9, "skills": [ 3 ], "capacity": [ 10 ], "costs": { "per_hour": 1000 }, "time_window": [ 1693405800, 1693411200 ] }, { "id": 4, "start_index": 10, "skills": [ 2 ], "capacity": [ 10 ], "costs": { "fixed": 5000 }, "time_window": [ 1693402200, 1693413000 ] } ] }
Locations
And now, lastly we would define the locations
object and add all the locations used in the problem along with a valid id
. The locations
object with all the points used in this example:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
{ "locations": { "id": 1, "location": [ "34.083950,-118.318640", "34.076350,-118.338519", "34.000895,-118.204929", "34.018780,-118.317919", "33.996658,-118.261708", "33.916595,-118.240132", "33.946275,-118.385486", "34.057106,-118.361326", "34.016137,-118.253523", "33.940407,-118.265196", "33.98951774,-118.28330959" ] } }
Optimization POST Request
Bringing all these components together to create the final POST request that we will submit to the optimizer.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146
curl --location 'https://api.nextbillion.io/optimization/v2?key=<your_api_key>' \ --header 'Content-Type: application/json' \ --data '{ "description": "Vehicle Cost Example", "jobs": [ { "id": 1, "location_index":0, "service": 300, "skills": [1], "pickup":[0], "time_windows": [ [ 1693398600, 1693399500 ] ] }, { "id": 2, "location_index": 1, "service": 180, "skills": [1], "pickup":[0], "time_windows": [ [ 1693401300, 1693402200 ] ] }, { "id": 3, "location_index": 2, "service": 300, "pickup":[0], "skills": [2], "time_windows": [ [ 1693408500, 1693409400 ] ] } ], "shipments": [ { "pickup":{ "description": "Shipment Pickup 1", "id":1, "location_index":3, "service":120, "time_windows":[[1693404000,1693404900]] }, "delivery":{ "description": "Shipment Delivery 1", "id":1, "location_index":4, "service":120, "time_windows":[[1693405800,1693406700]] }, "skills":[2], "amount":[2] }, { "pickup":{ "description": "Shipment Pickup 2", "id":2, "location_index":5, "service":120, "time_windows":[[1693407600,1693408500]] }, "delivery":{ "description": "Shipment Delivery 2", "id":2, "location_index":6, "service":120, "time_windows":[[1693409400,1693410300]] }, "skills":[3], "amount":[2] } ], "vehicles": [ { "id": 1, "start_index": 7, "skills":[1], "capacity":[10], "costs":{ "fixed":1000, "per_hour":1000 }, "time_window": [ 1693396800, 1693404000 ] }, { "id": 2, "start_index": 8, "skills": [2], "capacity":[10], "costs":{ "fixed":1000 }, "time_window": [ 1693402200, 1693411200 ] }, { "id": 3, "start_index": 9, "skills": [3], "capacity":[10], "costs":{ "per_hour":1000 }, "time_window": [ 1693405800, 1693411200 ] }, { "id": 4, "start_index": 10, "skills": [2], "capacity":[10], "costs":{ "fixed":5000 }, "time_window": [ 1693402200, 1693413000 ] } ], "locations": { "id": 1, "location": ["34.083950,-118.318640","34.076350,-118.338519","34.000895,-118.204929","34.018780,-118.317919","33.996658,-118.261708","33.916595,-118.240132","33.946275,-118.385486","34.057106,-118.361326","34.016137,-118.253523","33.940407,-118.265196","33.98951774,-118.28330959"] } } '
Optimization POST Response
Once the request is made, we get a unique ID in the API response:
1 2 3 4 5
{ "id": "e4bbf6a9b4f95edcc8c95447460f6356", "message": "Optimization job created", "status": "Ok" }
Optimization GET Request
We take the ID and use the Optimization GET request to retrieve the result. Here is the GET request:
curl --location 'https://api.nextbillion.io/optimization/v2/result?id=e4bbf6a9b4f95edcc8c95447460f6356&key=<your_api_key>'
Optimization GET Response
Following is the optimized route plan:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303
{ "description": "Vehicle Cost Example", "result": { "code": 0, "summary": { "cost": 5067, "routes": 3, "unassigned": 0, "setup": 0, "service": 1260, "duration": 4934, "waiting_time": 2945, "priority": 0, "delivery": [ 4 ], "pickup": [ 4 ], "distance": 61393.600000000006 }, "routes": [ { "vehicle": 3, "cost": 418, "steps": [ { "type": "start", "arrival": 1693407772, "duration": 0, "setup": 0, "service": 0, "waiting_time": 0, "location": [ 33.940407, -118.265196 ], "location_index": 9, "load": [ 0 ] }, { "type": "pickup", "arrival": 1693408235, "duration": 463, "setup": 0, "service": 120, "waiting_time": 0, "location": [ 33.916595, -118.240132 ], "location_index": 5, "id": 2, "load": [ 2 ], "description": "Shipment Pickup 2" }, { "type": "delivery", "arrival": 1693409400, "duration": 1508, "setup": 0, "service": 120, "waiting_time": 0, "location": [ 33.946275, -118.385486 ], "location_index": 6, "id": 2, "load": [ 0 ], "description": "Shipment Delivery 2" }, { "type": "end", "arrival": 1693409520, "duration": 1508, "setup": 0, "service": 0, "waiting_time": 0, "location": [ 33.946275, -118.385486 ], "location_index": 6, "load": [ 0 ] } ], "setup": 0, "service": 240, "duration": 1508, "waiting_time": 0, "priority": 0, "delivery": [ 2 ], "pickup": [ 2 ], "distance": 22189.5, "geometry": "q~cnEftypUr@?hD@xA?h@?X?PAJ?N?h@?^?dB?X?lA?rA?|C?x@?nB?jA?X?jA@`A@B?zBAbB?`@?ZAf@?b@?R@d@?^?d@?L?@kB?W?k@?c@?w@?y@@mEAiA@cADeF?m@@yA@yE?G?IBO@OBINk@JSJSf@s@~@qAf@q@b@m@d@s@BGDIBG@GDO@M@GD[?M?G@g@@qD?[?W?M?_A?K?K?O?cA?C?[?cA?W?q@?_@?e@?aA?Q?u@?iH?e@?_A?m@@uAAyA?S?{A?cA?k@AwC?kCF?nA?J?H?J?J?P?H?N?F?n@Ap@?J?v@?dA@J?bB?x@?tB@lA?hA?f@?t@@x@?P?V?vA?d@?hAEf@?^AV?b@?|@ArCC|BClA?L?T?n@@B?f@@l@?h@?p@?dC?rB?`B?V?t@?hA?T?h@@R??w@?]?]?_@?_@?Y?S?U?iF?q@?sA?uA?w@?cD?oB?{@?o@?W?m@O?[HWF?@?AVGZIN??l@?V?n@?z@?nB?bD?v@?tA?rA?p@?hF?T?R?X?^?^?\\?\\?v@?dAAV?^?D?\\?F?NAX?t@?b@ArA?HCrC?|@?t@?NAT?L?NA^?dACvCApA?BCdGAp@?\\?T?^?\\?h@?f@?DAX?NQ?m@?eBA_@?Y?g@AY?eB?qC?gC?S?c@?[?w@AK?m@?gA?U?}DA[AO?U?UL[?Y@M?QAS?Q?gBAK?UO}ACK?c@?e@?G?SA{BA_A?_B@YAQ@W?c@A}@Ak@@IDIFO?c@Aa@?K?O?S?M?c@A]?@N@NDT@JBRBTDR@TJp@Df@DZD\\@NBTBL@PDTN`ADZF^BRBVHZF\\Jl@PfABv@Bx@HrD@|A?dD?vA?n@?n@?bB?v@A~B?rA?rA?jA?pD?H?fFAzH@bFAtACdAA|@Ch@Cb@GnAIjAEd@AVCPa@|DAFAHWrBKbAE^]nCQrAUzBCVKpAM|AIdBElAGnBA^CzB@lA?x@@nAAN?\\?`@?f@?J?P?`@?l@?R?f@@~@AV?b@?N?f@?Z@L?J?N?L?hF?jBBjL@pA?H?zD?hA?fC?`@?r@@`@?ZAlBAdE?t@?t@?R?bC?xA@`ABhABdABl@BT@R@R@^B\\@VBP@XBT@N@NDX@LBX@LHn@Jx@NhADf@XjBXpBr@bFT~AL~@BLDVl@pEn@tEBN@BvBfPN~@L~@b@bDXtBR`BHt@NhBPb@@H@D?F@JB^BXF~@@HBj@@^@XDp@DpA@p@BjB@^@`CA~B?fA?V?r@?TA~@?z@?jBAhA?rAAxA?nAAbB?nB?|@A`B?x@?\\?tAAz@?rA?jA?|B@`A?f@@tABpA@ZBnA@n@@h@BpA@d@@f@Bz@BxA@X?TBr@BnABjA?F?^@`@Bt@Bv@@h@@n@B`@DrAFxBB|@D|AJlEJ|D@NBdADpB@r@?n@CbAAb@AZEjACl@Gt@MrAIn@Gf@Mv@Ih@UlACHCLEPK\\YhAGNUr@c@jAe@hAQ`@O\\KRYh@U^S\\a@n@[f@]f@Yd@S\\_@j@[d@i@x@QVa@n@{@nAGLc@n@m@`AW`@{@pAEDIHGDCBC@CDs@fAOVOV_@h@W^uBrDOXKRUd@OXWh@Yj@QZMT]z@_@x@Uj@C`@Yr@Qd@[|@KZIXQj@ELOj@I^Mf@GRCPEXQ|@ADQ|@Mt@UnAOdAEXK|@Kt@ALKfAC`@CVEp@AZCf@At@AVA~@?`@?dABnA@n@Bb@HnAFz@BRHv@Hh@Jt@Hd@BJDTJf@R`A`@pBd@zBFZ@Fb@rBVlAHd@ZvAn@~CPx@Nv@j@lCf@dCFl@BXVnAJf@R~@Nx@HZLn@TbAH`@Lr@VjADZLr@LfAHbADh@BV@^BX@N@H?H@L?L?P@Z@V@R@T@\\?\\?l@K`BC\\IvCIpC?RARAT?b@Af@AhJ?tAAF?JAJCLEHIREDCBCBE@I@I?[?M??H?P@~ABz@?\\?f@O\\?V?RCfCAr@C|A?X?l@w@?m@?g@?E?E?Q?kA@Y?_@?kA?oA@_A?U?[?}@@{@?w@BaA?y@AeB@aCA_D?aD?_F?sB?S?mE?s@?M?Q?o@Aa@@W?sAAc@?M?_@?cB?o@?S?}A?W?W?{@?a@?_A?U?[AO?S??RAH?^Al@?p@?L?X?nB@bB?tA?\\?zA?rB?r@?^?jB?fD?P?|B?F?X?T?r@?L@fB?v@c@AgAA?aAz@?BA@A?E@uCc@?Y?C?ABA@@hB??" }, { "vehicle": 1, "cost": 1298, "steps": [ { "type": "start", "arrival": 1693398736, "duration": 0, "setup": 0, "service": 0, "waiting_time": 0, "location": [ 34.057106, -118.361326 ], "location_index": 7, "load": [ 0 ] }, { "type": "job", "arrival": 1693399500, "duration": 764, "setup": 0, "service": 300, "waiting_time": 0, "location": [ 34.08395, -118.31864 ], "location_index": 0, "id": 1, "load": [ 0 ] }, { "type": "job", "arrival": 1693400112, "duration": 1076, "setup": 0, "service": 180, "waiting_time": 1188, "location": [ 34.07635, -118.338519 ], "location_index": 1, "id": 2, "load": [ 0 ] }, { "type": "end", "arrival": 1693401480, "duration": 1076, "setup": 0, "service": 0, "waiting_time": 0, "location": [ 34.07635, -118.338519 ], "location_index": 1, "load": [ 0 ] } ], "setup": 0, "service": 480, "duration": 1076, "waiting_time": 1188, "priority": 0, "delivery": [ 0 ], "pickup": [ 0 ], "distance": 9876.7, "geometry": "ywznEjmlqUBG@G@GAEEEMIw@[q@WLoA@KB[JmAB_@?U@[?a@?iABiD?u@@c@@aB@iB@g@?S@_ABsF@aB?s@?k@@o@?m@@g@?UBgBB{EDcF@s@@qD@aB@[@gA?y@?]BuB?}@?W@m@?Q?W@{@?]?K@M?kA?Q?U?I@_@BuE@qA@W?c@DcB?u@?y@?M@}BWGwF_B{@WiI}BcCo@WI_@KYIa@MUGOEMCMGIAIAG??S?S?M@U?W@mA@}A@e@?_@?g@@aA@qB@yB@cB@s@?[?M?c@@o@@wA?w@@}@@cA@_B?U?Q?w@BuB@cB?m@?_@@g@?]?cA@a@?sA@iA@kA?Q?U@oA?e@?U?k@QAkA@c@?gA?}@@c@AC?YAWASCSAWEa@EKCi@GyBYWC[CU?W?yH@aC?oB?Y?O?q@@]@c@@E@[?K?i@?o@@cB?mA?}@?u@?g@?[@{G?gD?eC?iB@s@?YAA?I?I?OCKCWEIAa@Iq@KA?OCG?E?Y?M?K?[@c@DE?o@He@Dg@@e@?C?E?u@?S?aC?s@?WAUCmAKq@EwB@c@?yA?gA?O?WAUCOAEAQGOGUKQMUMKGECMEMEOEOCSEUAE?OAOAWA?o@?i@?Y?o@?Q?y@?iBA{A@]?c@?[?u@?m@?W?m@?g@?e@?K?c@?g@?k@?cA?q@?e@?oB?a@?Y?i@AoB?Q?oA?oA?k@?e@?wA?s@_B@A`@@B?@?@?@DDBB@@@B?P?R?N?b@?d@?J?K?e@?c@?O?S?QACAACCEE?A?A?AAC@a@~AA?r@nJCxO?`B?|B?xEAhB??`@?f@?l@?t@?l@?b@?d@?l@@tB?n@?l@?l@@hB?n@?l@?vB?j@A^?T?R?d@?pA?R?bBAf@@T?v@?~@?b@AbC?n@?T?F?F?H@L?DDb@D\\DRDN?BHXJVHVFRJ\\@FH^D`@?B?B@T@L?TENAX?V?LAPCVCVWnC[dDEf@CXCZARAp@?tC@nA?JAN?LA\\DNA~@?nA?^?^AXANANAN?JAJ?N@r@@hA?d@?d@?x@?tC?d@?x@@nA?Z?h@?r@?p@a@???" }, { "vehicle": 2, "cost": 3350, "steps": [ { "type": "start", "arrival": 1693404153, "duration": 0, "setup": 0, "service": 0, "waiting_time": 0, "location": [ 34.016137, -118.253523 ], "location_index": 8, "load": [ 0 ] }, { "type": "pickup", "arrival": 1693404900, "duration": 747, "setup": 0, "service": 120, "waiting_time": 0, "location": [ 34.01878, -118.317919 ], "location_index": 3, "id": 1, "load": [ 2 ], "description": "Shipment Pickup 1" }, { "type": "delivery", "arrival": 1693405843, "duration": 1570, "setup": 0, "service": 120, "waiting_time": 0, "location": [ 33.996658, -118.261708 ], "location_index": 4, "id": 1, "load": [ 0 ], "description": "Shipment Delivery 1" }, { "type": "job", "arrival": 1693406743, "duration": 2350, "setup": 0, "service": 300, "waiting_time": 1757, "location": [ 34.000895, -118.204929 ], "location_index": 2, "id": 3, "load": [ 0 ] }, { "type": "end", "arrival": 1693408800, "duration": 2350, "setup": 0, "service": 0, "waiting_time": 0, "location": [ 34.000895, -118.204929 ], "location_index": 2, "load": [ 0 ] } ], "setup": 0, "service": 540, "duration": 2350, "waiting_time": 1757, "priority": 0, "delivery": [ 2 ], "pickup": [ 2 ], "distance": 29327.4, "geometry": "uwrnEbkwpUSKkBcAoAq@aB_AeAk@a@SsA{@{A{@g@a@a@_@mAeAmAkAmAgAmAiAoAgAsAgAk@hAYl@qCdGiAdCo@i@k@g@WUMMUSSSc@_@a@_@OO_@YiAaASSUQWWm@k@GGIGWU[UQOCCSQKIe@c@_@bAEv@CNKf@Sz@GTMb@Y~@Wx@?@GRO`@O`@Ul@I^]p@Yn@Sb@GVADk@nAq@nBc@tBgBzD_AtBSb@Q`@OZO^KRaAdCUl@e@pAUp@GROd@Md@M`@K^GTGVOj@CJKd@Sx@I`@SdAQv@Ot@S|@Ml@Oj@Kb@K`@St@KXGRITIVMZKXEJIRMZKTGNGNy@dBYn@S`@Ud@MVYn@o@tAO^MV]v@a@|@[v@Q\\g@hACFIPs@zAg@`AMVu@xAILS\\e@t@o@`AINc@r@c@p@]j@[h@MRi@`Aw@tAQ`@Q\\Sb@Qb@Ul@M\\Qd@GRGNK`@Oj@CHCHCLEPKf@CLCNCJAJAJ?DCL?FAJCr@?J?j@@^?bB?NBl@Bl@Br@HxALrFBd@DxAFdBDj@@L@XDp@@JJpAFj@Dd@Hn@@JTdBJv@@HBT@JN~@ZxBZlCJp@Fn@@HBZLjADt@Ft@FtADxABvA?x@?lA?pBAH?|@Aj@?~C?~AAv@AlHArAClF?`CEzE?nA?n@?d@?hAAnA?h@AjC?L?z@AjA?dBApB?VA|B?zB?\\C`EA~D?jC?vAAx@?P?x@?`@?f@?h@AV?jCAn@AtGAd@?H?LAtEAjA?b@?R?LAdCKXCFCJAHAVAp@CfAAPMd@DpB@d@@x@?H?R?VF`DBb@NzC@X?@@n@@dA@`B@tA@tABr@Bp@J~A@XBX?D@F?B@BT@f@@J?XAH?N?\\?r@ANAH?XCJE~@?rA?T?dB?vAAP?jA?b@?rA?h@?p@?`C?pCAb@?T?R?j@?b@?L?l@?v@?lA?d@?|@?jB?dDA`@?z@?n@?h@?vAAf@?L?h@?j@?^?T?X?r@?n@?rB?h@AhA@nA?fE@R?fH@X?dA?bA?N?b@?J?L@F@F?HB??D@FDHBHFFDGEIGICGEEA??ICG?GAMAK?c@?O?cA?eA?Y?gHAS?gEAoA?iAAi@@sB?o@?s@?Y?U?_@?k@?i@?M?g@?wA@i@?o@?{@?a@?eD@kB?}@?e@?mA?w@?m@?M?c@?k@?S?U?c@?qC@aC?q@?i@?sA?c@?kA?Q?wA@eB?U?sA?_A?KCu@As@?SeCQuBOwBCWKwAKaBMqAAe@CkBCq@GkDAuBAuACWAa@AyBAaBAeBCa@CKES?_@Ac@?u@@yCDwM?eB?U?U@yE@uC@}ABqE@}A?w@?y@?_@B_C?g@@}BBsD?oA?a@?a@@_@?aA?q@@_B@oD@mC?[@sABmL@cCBsK?G@k@?qA@gC?}DAcAAoA?QBk@AOCcACsAC}@Ey@?SBq@AUEw@Ai@CWIs@AQEWCSCUIa@E]I[WsAYeBQgAAKCQCQCUCYC]?gB?OAI?q@AM?O?YAe@@iB@s@@M@w@Ba@B[BKBOHYJYFMFOHMDKFILQHMTWLQTSNUP[Pc@FSDQHSHUL_@FIHGFGPIPGNERALAL?N@V@J?T?t@Fb@B~@DbADf@FN@J?J@pAAv@CdAE`@CPArAGb@C|@GjAYbAEnAAdACx@Ct@ChACx@Al@@J?lBNP?H@L@b@FLBNDRDl@P`@Lj@Vv@`@~@h@n@^PJh@Zh@X`Ah@jAr@RRp@X^T|@f@x@d@b@RVJz@^x@Xf@PXHf@RlAb@d@RPHPJLHf@V\\TRJXPx@d@^Rl@^XNFBJHLHXNn@^f@Vb@Vh@XZPDBXPVND@LF^Nf@Tv@XHDD@JBn@R~@T`ATdARhAPh@Hn@F\\DL@TBP?tCHv@@H?R@L@f@@pE@Z?|B?^@bBAJ?R?ZAj@?zOCn@?x@?V?bBApC?zA?x@Af@?tDAH?v@?R?|AA~A?JAvAA`ACxDKhAE\\Cl@CdBGlBJ\\?v@@~@Bd@?vAAdA?r@?`@?R?L?R?`@?J?F?J??O?y@?MAG?I?S@i@?_@?gG?_@?u@?Y?k@?a@?O?a@?uB?[?k@?wK?s@?e@A]?w@?w@?g@?e@?_@AmBAiBAaI?_@?y@?U?y@?EAI?A?iDA_BA_BC_H?i@?S?W?_A@gA?o@AMAwP?s@?M?kBeB@_B?iDAo@@wB?yA@eB?q@?m@?O?_BAeA@a@AuC?eE@c@?e@??}@?c@AqD?_AAkA?oA?e@?c@?c@@iA?w@?O?M?W?sA?{A?W?a@?O@kB?g@?Y@oI?g@?c@?Y?G?uA?u@?y@?cE?U?o@?w@@sA?u@CsD?O?IA[?cA?mA?oA?s@A_@@[Aa@@]?U?_A?[?]?Q@a@?a@AeB?]?c@@W?u@?QAc@?u@?Yo@@M?oCAAeAAeFAuFAoEh@Cf@Eb@Al@Cp@EAU?U?aA?Y?q@?w@?qA?y@?}A?k@AY?W?I?qF?e@?OAkA@{@?[?UAQ?cB?S?K?iA?K?S?e@?W?k@?[?e@?q@?M?K?]?g@?u@?[?eA?G?GHW?wB?s@?m@@cA@aA@u@@WG[@GD]Hc@FYDOLc@FSFMHSR_@NW@CZe@RWPQXUBCNKNMTMJILENIJGBATILCBALCNEJCLCHA`@CD?NAL?TAb@?N?J?L@ZAN?n@A^?~@??k@?[?a@A]?g@?eB?e@AgA?Y?oC?SAiH?oB?_@@k@?cAAcA?WAc@?I?]A{@?[AY?M?w@AS?K?k@?SAiA?[A{@?iA?[AoA?c@?EA]?O?g@?w@AS?mA?[AU?i@?_@Ak@?cAAu@?i@?Y?eAA_A?k@CgC?I?SCeE@WAs@?eCAgAAoA?]Ai@?e@?q@mBB[?A?e@ACA?AEaDCuA?K?kCBGHGPAVK??" } ] }, "status": "Ok", "message": "" }
Following is a visual representation of the initial locations of tasks, vehicles and the routes suggested after optimization as per the given constraints.
Analyzing the Solution
Looking at the result we can observe some interesting insights:
-
summary
section:-
We get an overview of the overall result with a total distance of 61394 meters covered within a total duration of 4934 seconds to complete all the assigned tasks.
-
There are 3 routes with a total cost of 5067. This cost is in seconds as we did not explicitly specify any
travel_cost
, so the solver went with the default setting ofduration
. We can see that one of the vehicles was not used, probably because of its high cost. More details in the next point. -
Other fields in summary provide details about total service time of all the assigned tasks, total waiting_time for the assigned tasks among other details.
-
-
routes
section:-
We can see that vehicle 1 is taking care of job 1 & 2, vehicle 2 is assigned to shipment 1 and job 3, and lastly vehicle 3 is assigned to fulfill shipment 2. This is because of the skills needed to complete those jobs. Take a look at the skills specified for jobs 1, 2 and 3 and that specified for vehicle 1, 2. As an experiment, you can try a variation by removing the skill constraints and check if the task distribution still remains the same or not.
-
As we know from the Basic Route Optimization example that the
cost
value is returned as per thetravel_cost
set in the input request. In our example, the cost is calculated based on theduration
hence all costs in the solution are in seconds. Let’s take a look at the costs for each vehicle:-
Vehicle 1: This vehicle was configured for both
fixed
andper_hour
type of cost. When used, this vehicle incurs a cost of 1000 seconds along with additional 1000 seconds for every hour of operation. The total duration for which this vehicle operates is 1076 seconds (~18 mins) and hence the per_hour cost for this vehicle comes out to be 298 seconds. The total cost of the route, 1298 seconds, is then calculated by adding this value to the fixed cost of using the vehicle. Please note that whenper_hour
cost is usedtravel_cost
of the route is not taken into account for route cost calculations. -
Vehicle 2: This vehicle was configured for only
fixed
cost considerations. When used, this vehicle would incur a fixed cost of 1000 seconds. Looking at the result we conclude that this vehicle operated for a total of 2350 seconds. The fixed cost of the vehicle was added to this value to arrive at the total cost of the route i.e. 3350 seconds. -
Vehicle 3: This vehicle was configured for only
per_hour
cost considerations. On operating for an hour, this vehicle would incur a cost of 1000 seconds. As we can see, the total duration that this vehicle operates for is 1508 seconds (~25 min) and hence the total cost for this vehicle is 418 seconds. Since,per_hour
cost is the only measure of the cost when used, the total cost of the route also becomes 418 seconds. -
Vehicle 4: This vehicle is similar to vehicle 2 in terms of skills, capacity and even shift timings, but has a high fixed cost. We can see that this vehicle was not used because of this reason, even though some task locations were closer to its start location when compared to start location of vehicle 2.
-
-
The total cost of the solution, 5067 seconds, is arrived by adding up the costs of each individual route.
-
As we saw, NextBillion.ai’s Route Optimization Flexible API understands the cost considerations you provide and suggests the best solution accordingly. We encourage you to go ahead and try out different configurations of vehicle or task locations, time window constraints, skills, number of tasks and explore how different solutions are generated for different scenarios presented to Route Optimization Flexible API.
We hope this example was helpful. Check out some more use cases that Route Optimization Flexible API can handle for you!